The Noncentrosymmetric Orthoborate $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

ROBERT W. SMITH and DOUGLAS A. KESZLER*
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Gilbert Hall 153, Corvallis, Oregon 97331-4003

Received December 26, 1991; in revised form March 30, 1992; accepted March 31, 1992

Abstract

The new orthoborate $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ has been synthesized and its structure determined by single-crystal X-ray methods. It crystallizes in an orthorhombic cell with dimensions $a=9.305(3), b=12.128(1)$, and $c=4.9255(8) \AA$; the space group is $P 2_{1} 2_{1} 2_{1}$. The structure was determined from 876 independent reflections and refined to the final residuals $R=0.024$ and $R_{w^{\prime}}=0.034$. It exhibits a three-dimensional framework of vertex-sharing ZnO_{4} tetrahedra and BO_{3} triangles that isolates Ba atoms in channels extending along the c axis. The optical second harmonic signal generated from a $1064-\mathrm{nm}$ fundamental and microcrystalline sample is approximately 10% of that observed from the frequency converter potassium dihydrogen phosphate (KDP). This result is consistent with the magnitude of the nonlinearity computed on the basis of the anionic group model. © 1992 Academic Press, Inc.

Introduction

In this report, we describe the synthesis, structure, and optical second-order nonlinear characteristics of the new material $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$. This compound has resulted from our continuing studies of borates having the formula $X Y_{2}\left(\mathrm{BO}_{3}\right)_{2}$, where X and Y are different cations with +2 formal charges (1).

Borates containing Zn in combination with Cu have been reported to catalyze oxidative dehydrogenation of a variety of organic molecules and to be effective in the conversion of synthesis gas to alcohols (2). Because of their wide transparency windows, new noncentrosymmetric zinc borates could also well afford desirable nonlinear optical characteristics similar to those of the materials $\mathrm{BaB}_{2} \mathrm{O}_{4}$ (3) and $\mathrm{LiB}_{3} \mathrm{O}_{5}$ (4). In the title compound, the presence of sim-

[^0]ple orthoborate groups only and their poor alignment, however, affords a small harmonic conversion efficiency.

Experimental

Powders of $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ were prepared by grinding stoichiometric ratios of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(99.999 \%$, Johnson Matthey), $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (99.999%, Johnson Matthey), and $\mathrm{B}_{2} \mathrm{O}_{3}$ (99.99%, Morton Thiokol) under hexane followed by heating in Pt crucibles at $600^{\circ} \mathrm{C}$ for 30 min and at $800^{\circ} \mathrm{C}$ for 18 hr with several intermittent grindings. Samples were single phase as determined from analysis of X-ray powder diffractograms obtained with an automated Philips diffractometer. Single crystals were grown from the melt by heating a sample to $980^{\circ} \mathrm{C}$, cooling to $860^{\circ} \mathrm{C}$ at $1.5^{\circ} \mathrm{C} / \mathrm{hr}$, then airquenching.

A rod-shaped crystal having dimensions $0.25 \times 0.12 \times 0.10 \mathrm{~mm}$ was physically sepa-

TABLE I
Crystal Data and Experimental Conditions FOR $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Diffractometer	Rigaku AFC6R
Radiation	Graphite-monochromated
	Mo $K \alpha(\lambda=0.70926 \AA)$
Formula wt. (amu)	385.71
$a(\AA)$	$9.305(3)$
$b(\AA)$	$12.128(1)$
$c(\AA)$	$4.926(1)$
$V\left(\AA^{3}\right)$	$555.9(2)$
Space group	$P 2_{1} 2_{1} 2_{1}$
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4.61
$F(000)$	696
Z	4
Linear abs. coeff.	157.58
$\quad\left(\mathrm{~cm}^{-1}\right)$	
p factor	0.05
No. unique data with	876
$F_{\mathrm{o}}^{2}>3 \sigma\left(F_{\mathrm{o}}^{2}\right)$	
$R_{\text {int }}$	0.033
$R\left(F_{\mathrm{o}}\right)$	0.024
$R_{\mathrm{w}}\left(F_{\mathrm{o}}\right)$	0.034
Error in observation	1.03
\quad of unit wt. $\left(\mathrm{e}^{2}\right)$	

rated from the crucible for structure analysis. Lattice parameters were refined from 10 reflections in the range $26^{\circ}<2 \theta<31^{\circ}$ that were automatically centered on a Rigaku AFC6R diffractometer equipped with Mo $K \alpha$ radiation. Intensity data covering the range of indices $0 \leq h \leq 13,0 \leq k \leq 17$, and $-6 \leq l \leq 6$ were collected with the $\omega-2 \theta$ scan technique at a scan speed of 16% min in ω and a scan width $\Delta \omega=(1.50+0.30$ tan $\theta)^{\circ}$. From 1756 reflections measured to $20=$ $60^{\circ}, 876$ unique data having $F_{0}^{2} \geq 3 \sigma\left(F_{0}^{2}\right)$ were obtained.

All calculations were performed on a $\mu \mathrm{Vax}$ II computer with programs from the TEXSAN crystallographic software package (5). The systematic absences $h 00(h=$ $2 n+1), 0 k 0(k=2 n+1)$, and $00 l(l=$ $2 n+1$) unambiguously define the noncentrosymmetric space group $P 2_{1} 2_{1} 2_{1}$. Ba and Zn positional parameters were determined with the computer program SHELXS (6),
and the B and O positions were found from subsequent analyses of difference electron density maps. Following refinement with isotropic thermal parameters the data were corrected for absorption with the computer program DIFABS (7) and averaged. Minimization of the function $\Sigma w\left(\left|F_{0}\right|-\mid F_{\mathrm{c}}\right)^{2}$ with data having $F_{0}^{2} \geq 3 \sigma\left(F_{0}^{2}\right)$ and anisotropic temperature factors on each atom resulted in the residuals $R=0.024$ and $R_{w}=0.034$; weights were assigned as the reciprocal of the variance for each observation, and atomic form factors were taken from "International Tables for X-ray Crystallography" (8). The final difference electron density map is featureless with the largest peak corresponding to 0.40% of a Ba atom. Crystal data and final atomic parameters are listed in Tables I and II, respectively.

Unit cell parameters were also refined from powder X-ray data. A sample was ground under hexane, sieved with a 200 mesh wire screen, and annealed at $700^{\circ} \mathrm{C}$ for 2 hr . Eleven intense reflections in the range $19^{\circ}<2 \theta<45^{\circ}$ were measured and their Bragg angles corrected with Si (NIST Reference Material 640b) as the internal standard. Least-squares refinement of the cell parameters afforded the values $a=9.332(3)$,

TABLE II
Final Atomic Coordinates and Temperature FACTORS FOR $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

Atom	x	y	z	$B_{\text {eq }}{ }^{a}$
Ba	$0.39607(5)$	$0.22892(3)$	$0.0310(1)$	$1.04(2)$
Zn 1	$0.36945(8)$	$0.89488(6)$	$0.0452(2)$	$0.89(3)$
Zn 2	$0.6588(1)$	$0.03145(7)$	$0.9474(2)$	$0.99(3)$
B 1	$0.4098(8)$	$0.0059(6)$	$0.558(2)$	$0.7(2)$
B 2	$0.6663(8)$	$0.1669(6)$	$0.464(2)$	$0.9(3)$
O 1	$0.5931(6)$	$0.2475(4)$	$0.595(1)$	$1.3(2)$
O 2	$0.3335(5)$	$0.0932(4)$	$0.460(1)$	$1.3(2)$
O 3	$0.2513(6)$	$0.4061(5)$	$0.380(1)$	$1.1(2)$
O 4	$0.4602(6)$	$0.0113(5)$	$0.827(1)$	$1.2(2)$
O 5	$0.5653(7)$	$0.4128(5)$	$0.086(1)$	$1.9(2)$
O 6	$0.6683(6)$	$0.1569(5)$	$0.192(1)$	$1.1(2)$
${ }^{a} B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$.				

Fig. 1. Labeled sketch of the unit cell of the compound $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ as viewed along the c axis. Small filled circles represent B atoms, small open circles with shaded bonds Zn atoms, small open circles with open bonds Ba atoms, and large open circles O atoms, here, and in subsequent figures.
$b=12.121(5)$, and $c=4.922(2) \AA$, which compare well to those from the single-crystal data (cf. Table I).

An optical second-harmonic test was performed by the Kurtz-Perry method (9). The 1064-nm line of a Nd^{3+} : YAG laser served as the fundamental. Visible light was filtered from the incident beam with a Corning 1-75 filter having a transmittance of 87% at 1064 nm and 0% at 532 nm . The microcrystalline solid was placed on a quartz plate inside the sample chamber. Infrared radiation was filtered from the output beam with a Corning $7-57$ filter having a transmittance of 88% at 532 nm and 1% at 1064 nm . The intensity of the second harmonic was monitored with a photomultiplier tube attached to a Tektronix oscilloscope. Microcrystalline KDP served as a standard for the measurement.

Results and Discussion

A labeled sketch of the contents of the unit cell appears as Fig. 1. The structure is
a new type exhibiting a framework of ZnO_{4} tetrahedra and BO_{3} triangles that share vertices; a portion of the framework is depicted in Fig. 2. Two crystallographically distinct types of Zn atoms are present in the structure. Zn 2 -centered distorted tetrahedra share vertices O3 to form zig-zag strings that extend in the c direction. Vertices of adjacent tetrahedra arc additionally bridged by atom B2. The B2-centered triangle also serves as a bridge to atom Znl . The tetrahedra centered by atom Zn 1 are isolated from one another, but are bridged through vertices O4 and O5 by atom B1. Application of the 2_{1} screw axis along b to the fragment of Fig. 2 completes the framework. By sharing O 4 atoms, fused ZnO_{4} groups afford the onedimensional zinc oxide matrix sketched in Fig. 3.
The framework may also be described as a condensation of the six- and eight-membered rings illustrated in Fig. 4. The sixmembered ring is composed of two Zn 2 atoms, one B 2 atom, two O 3 atoms, and

Fig. 2. Sketch of the zinc borate framework as viewed along the a axis.

Fig. 3. One-dimensional zinc oxide portion of structure.
one O6 atom. The rings are fused through vertices O3 and O6 to form a chain that extends in the c direction (Fig. 2). The eightmembered ring is composed of two Zn 1 atoms, two B 1 atoms, two O 2 atoms, one O 4 atom, and one O 5 atom. The rings are fused by sharing terminal vertices O 4 and O5 to again form a chain that extends in the c direction. The full three-dimensional framework is realized by connecting the chains through vertices O4. Within this construction, Ba atoms occupy sites in tunnels that extend along the c axis (Fig. 1).

Interatomic distances and angles are

Fig. 4. Sketches of (top) 6-membered $\mathrm{Zn}_{2} \mathrm{BO}_{8}$ ring and (bottom) 8-membered $\mathrm{Zn}_{2} \mathrm{~B}_{2} \mathrm{O}_{9}$ ring.

TABLE III
Selected Interatomic Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$

	Distance		Angle
Ba-O1	2.831(5)	O1-Ba-O4	$71.0(1)$
$\mathrm{Ba}-\mathrm{O} 2$	2.740 (5)	O1-Ba-O5	68.8(2)
$\mathrm{Ba}-\mathrm{O} 3$	3.063(6)	O1-Ba-O6	69.7(2)
Ba-O4	$2.887(6)$	O1-Ba-O6	$99.0(2)$
Ba-05	$2.744(6)$	O3-Ba-O2	84.0(2)
Ba-06	$2.759(6)$	$\mathrm{O3-Ba-O5}$	$68.1(2)$
Ba-06	$2.794(6)$	O3-Ba-O6	62.2(2)
		O3-Ba-O6	117.3(2)
		O5-Ba-O6	$94.1(2)$
		O5-Ba-O6	72.9(2)
		O2-Ba-O4	76.3(2)
Zn1-O1	1.949(5)	$\mathrm{O} 1-\mathrm{Znl}-\mathrm{O} 2$	$99.5(2)$
$\mathrm{Zn1-O2}$	1.940 (5)	O1-Znl-O4	$112.8(2)$
$\mathrm{Zn1-04}$	$1.966(6)$	O1-Zn1-05	112.5(3)
Zn1-O5	$1.926(6)$	O2-Zn1-O4	104.2(2)
		O2-Zn1-O5	120.2(3)
		O4-Znl-O5	107.4(3)
Zn2-03	1.977(6)	O3-Zn2-O3	118.1(2)
Zn2-03	$1.933(6)$	O3-Zn2-O4	102.3(2)
Zn2-O4	1.956(5)	O3-Zn2-06	100.7(2)
Zn2-O6	1.942(5)	O3-Zn2-O4	116.4(2)
		O3-Zn2-O6	$108.8(2)$
		O4-Zn2-06	109.2(2)
B1-02	1.36 (1)	O2-B1-04	118.2 (7)
B1-O4	1.41 (1)	O4-B1-05	118.4(6)
B1-05	$1.35(1)$	O5-B1-O2	123.3(7)
B2-O1	$1.35(1)$	O1-B2-03	118.3(8)
B2-03	1.41(1)	O3-B2-O6	118.4(7)
B2-06	$1.35(1)$	O6-B2-O1	123.1(7)

listed in Table III. The average $\mathrm{Ba}-\mathrm{O}$ distance, $2.8(1) \AA$, derived from the seven nearest O neighbors, is comparable to the expected value of $2.77 \AA$ calculated from crystal radii (10). Average distances for $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{B}-\mathrm{O}$ interactions are normal. The average $\mathrm{Zn}-\mathrm{O}$ distance $1.95(2) \AA$ compares well to the value reported in $\mathrm{Zn}_{3}\left(\mathrm{BO}_{3}\right)_{2}, 1.97$ \AA (11). Mild deviations from tetrahedral angles in the Zn environments are observed with the largest excursions represented by $\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 2,99.5(2)^{\circ}$, and $\mathrm{O} 3-\mathrm{Zn} 2-\mathrm{O} 6$, $100.7(2)^{\circ}$. The average $\mathrm{B}-\mathrm{O}$ distance $1.37(3)$ \AA in the orthoborate triangles is consistent
with the expected value, $1.365 \AA$ (12). Each triangle, however, contains one interaction that is longer than the other two. In each case, the O atoms associated with the longer distances bridge two Zn atoms, while the O atoms associated with the shorter distances bind to only one Zn atom. The BO_{3} triangles exhibit jejune deviations from the ideal $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angle of 120°. Atoms $\mathrm{O} 1, \mathrm{O} 2$, and O5 are three-coordinate and atoms O3, O4, and O6 are four-coordinate.

The intensity of light produced by SHG from the $1064-\mathrm{nm}$ line of a Nd^{3+} : YAG laser and a microcrystalline sample of $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ was found to be approximately 10% of that produced from a sample of KDP. We have computed an approximate nonlinearity of the material by application of the anionic group theory (13). In this computation, we assume that the BO_{3} groups are the principal chromophores contributing to the nonlinearity and fix their symmetry as $D_{3 h}$. The extended zinc oxide submatrix, which could contribute to the efficiency of harmonic conversion, has not been included in the present model. The components of the hyperpolarizability tensor of an individual BO_{3} group are summed from (1) with the orientation of each group in the crystal structure; the density of the groups is

$$
\begin{equation*}
\chi_{I I K}^{(2 \omega)} \approx \sum_{i j k} R_{I_{i}} R_{J_{j}} R_{K_{k}} \beta_{i j k}(\omega, \omega), \tag{1}
\end{equation*}
$$

also important in determining the magnitude of the nonlinear response. For a BO_{3} group having $D_{3 h}$ symmetry, the only nonzero components in the hyperpolarizability tensor are given by the relationship $\beta_{111}=$ $-\beta_{122}$. We use the value $\beta_{111}=0.641 \times$ 10^{-31} esu as reported by Chen, Wu , and Li (14). With this value, we compute for the title compound the coefficient $d_{14}=0.02$ pm / V.

To appreciate this result and the contribution of the relative orientations of the BO_{3} groups, we can consider the magnitude of the maximum nonlinearity that
could be observed for a collection of BO_{3} groups having a density equal to that of $\mathrm{BaZn}_{2}\left(\mathrm{BO}_{3}\right)_{2}$. That is, we consider a collection of eight BO_{3} groups, each having $\mathrm{B}-\mathrm{O}$ vectors aligned in the same directions. The maximum nonlinear coefficient d_{11} that could be observed for such a collection of groups would be proportional to $8 \times \beta_{111}$ \times (unit cell volume) $^{-1}=0.39 \mathrm{pm} / \mathrm{V}$. The result calculated for the compound is only 4% of this value.

The small magnitude of the coefficient d_{14} is determined by a poor alignment of the BO_{3} groups. The two types of crystallographically distinct BO_{3} groups are displayed in Fig. 1; a unit cell contains four groups of each kind that are related to one another by the three 2_{1} screw operations along the crystallographic axes. The β_{123} coefficients for each type of group sum constructively, but the signs of the coefficients for the different types are opposite, affording a nearly complete cancellation of the hyperpolarizability-tensor components and a small magnitude for the coefficient d_{14}. We will discuss in greater detail the structural contributions to the magnitudes of the d coefficients in a forthcoming paper on harmonic generation with compounds containing triangular oxoanions.

Acknowledgments

We thank Dr. Joseph Nibler and Kathleen I. Schaffers for assistance with the SHG measurements and calculations, respectively. Funds for this research were provided by the U.S. National Science Foundation Solid-State Chemistry Program, DMR-8814432. Acknowledgment is also made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. DAK thanks the Alfred P. Sloan Foundation for a research fellowship (1989-1991).

References

[^1]tallogr., Sect. C 46, 370 (1990); $\mathrm{SrCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$: R.W. Smith and D. A. Keszler, J. Solid State Chem. 93, 430 (1991); $\mathrm{SrBe}_{2}\left(\mathrm{BO}_{3}\right)_{2}:$ K. I. Schaffers and D. A. Keszler, J. Solid State Chem. 85, 270 (1990).
2. A. Zletz (Amoco Corp.), U.S. patent application 709,790,11, March 1985.
3. D. Eimerl, L. Davis, S. Velsko, E. Graham, and A. Zalkin, J. Appl. Phys. 62, 1968 (1987).
4. S. P. Velsko, M. Webb, L. Davis, and C. Huang, IEEE J. Quantum Electron. 27, 2182 (1991); C. Chen, Y. Wu, A. Jiang, B. Wu, G, You, R. Li, and S. Lin, J. Opt. Soc. Am., Sect. B 6, 616 (1989); B. Wu, N. Chen, C. Chen, D. Deng, and Z. Xu, Opt. Lett. 14, 1080 (1989).
5. Molecular Structure Corporation, TEXSAN, 3200A Research Forest Drive, The Woodlands, TX 77381 (1985).
6. G. M. Sheldrick, in "Crystallographic Computing 3" (G. M. Sheldrick, C. Krüger, and R.

Goddard, Eds.), pp. 175-189, Oxford Univ. Press, Oxford (1985).
7. N. Walker and D. Stuart, Acta Crystallogr., Sect. A 24, 214 (1968).
8. "International Tables for X-ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974). [Present distributor: Kluwer Academic Publishers, Dordrecht]
9. S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
10. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B 25, 925 (1969).
11. W. H. Baur and E. Tillmanns, Z. Kristallogr. 131, 213 (1970).
12. A. F. Wells, "Structural Inorganic Chemistry," 4th ed., p. 862, Clarendon Press, Oxford (1975).
13. C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986).
14. C. Chen, Y. Wu, and R. Li, J. Cryst. Growth 99, 790 (1990).

[^0]: * To whom correspondence should be addressed.

[^1]: 1. $\mathrm{Sr}_{2} \mathrm{Cu}\left(\mathrm{BO}_{3}\right)_{2}$: R. W. Smith and D. A. Keszler, J. Solid State Chem. 81, 305 (1989); $\mathrm{BaCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$: R. W. Smith and D. A. Keszler, Acta Crys-
